

Summer Days 2018

Networks Overview

Roman Foukal Commercial Engineer A&S TÜV Rheinland FS Technician ID No 322/15 Machinery

5. a 6. září 2018

Challenges Associated with Technology Convergence

Industrial IoT (IIoT) – IACS Convergence

Challenges Associated with Technology Convergence

- Plant-wide Industrial Ethernet Deployments
 - Single network technology for industrial automation and control system (IACS) control and information disciplines – e.g. drive, safety and motion
 - Different performance and resiliency requirements between IACS disciplines
 - Migration from isolated LANs to large flat and open LANs:
 - Loss of boundaries and natural segmentation
 - Network sprawl lack of design discipline

- Open Doesn't Mean Easy; Standard Doesn't Mean Foolproof
 - Open by default must secure by design, architecture and configuration
 - Varying implementations of Layer 2/3 network services within and across IIoT technologies may create incompatibilities
 - Customers required to invest in their own test labs to validate technology and products to meet their application requirements

IACS Application Requirements

Challenges Associated with Technology Convergence

What is secure?

What is real-time?

What is resilient?

	Process Automation	Discrete Automation	Loss Critical
Function	Information Integration, Slower Process Automation	Time-critical Discrete Automation	Multi-axis Motion Control
Communication Technology	.Net, DCOM, TCP/IP	Industrial Protocols - CIP	Hardware and Software solutions, e.g. CIP Motion, PTP
Period	10 ms to 1 second or longer	1 ms to 100 ms	100 µs to 10 ms
Industries	Oil & Gas, chemicals, energy, water	Auto, food and beverage, semiconductor, metals, pharmaceutical	Subset of Discrete automation
Applications	Pumps, compressors, mixers; monitoring of temperature, pressure, flow	Material handling, filling, labeling, palletizing, packaging; welding, stamping, cutting, metal forming, soldering, sorting	Synchronization of multiple axes: printing presses, wire drawing, web making, picking and placing

• Only you can define what this means for your application.

- Application dependent.
- One size does not fit all!

Source: ARC Advisory Group

Balancing Cost vs. Risk vs. Productivity

Challenges Associated with Technology Convergence

Stance on Availability, Safety and Security

- Drivers for risk management policies and overall risk tolerance:
 - Business practices
 - Corporate / local standards
 - Application requirements
 - Applicable industry standards
 e.g. NERC CIP
 - Government regulations and compliance
 - Industry Standards

Early, open and two-way OT-IT dialogue is critical!

 Enterprise and industrial policies and procedures (safety and security), for access control (avoidance of back doors) and network ownership

- Alignment with industrial functional safety standards such as <u>IEC 61508</u>, <u>IEC 62061</u> (SIL), <u>ISO 13849</u> (PL)
- Alignment with industrial security standards such as <u>IEC-62443</u> (formerly ISA99), <u>NIST 800-82</u> and <u>ICS-CERT</u>
- Network capabilities (zone segmentation into domains of trust)

Industrial IoT (IIoT) – IACS Convergence

Challenges Associated with Technology Convergence

Flat, Open and Non-Resilient IACS Network Infrastructure

PUBLIC Copyright © 2018 Rockwell Automation, Inc. All Rights Reserved.

Smaller Connected LANs to Create Boundaries and Segmentation

OT-IT Collaboration / Convergence

Challenges Associated with Technology Convergence

OT-IT Collaboration / Convergence

Challenges Associated with Technology Convergence

Technology Differences

- Software and hardware toolsets
- Varying implementations of Layer 2/3 network services may create incompatibilities
 - Availability, Performance, Traffic Types, Security

Cultural Differences

- Availability SLA (service level agreement)
 - Minutes/Hours vs. Hours/Days
- Policies
 - Security CIA vs. AIC
 - QoS prioritization of voice and video
 - NAT, Multicast

- Skill-gaps Workforce Development
 - OT personnel with knowledge of IT skills and requirements
 - IT personnel with knowledge of OT skills and requirements
 - Lack of Industrial IT personnel
- Functional Differences and Incompatibilities between IT:
 - Technologies e.g. resiliency
 - Products e.g. QoS policies
 - Applications e.g. WebEx and Skype
 - Solutions e.g. network access control

Challenges Associated with Technology Convergence

Criteria	Industrial OT Network	Enterprise IT Network
Environment	 Plant-floor Control Room Control Panel, Industrial Distribution Frame (IDF) 	 Carpeted Space, Data Center Data Communication or Wiring Closet, Intermediate Distribution Frame (IDF)
Switches	 Managed and unmanaged Layer 2 is predominant DIN rail or panel mount is predominant 	ManagedLayer 2 and Layer 3Rack mount
Wireless	 Autonomous (locally managed) – point solutions Mobile equipment (emerging) and personnel (prevalent) 	 Unified (centrally managed) solutions Mobile personnel – corporate provided or BYOD Guest access
Computing	 Industrial Hardened Panel Mount Computers and Monitors Desktop, Notebook 19" Rack Server Virtualization - becoming prevalent Hardening – sporadic patching and white listing 	 Desktop, Notebook Tablets 19" Rack Server and Blade Server Unified Computing Systems (UCS) Virtualization – widespread Hardening - patching and white listing

Challenges Associated with Technology Convergence

Criteria	Industrial OT Network	Enterprise IT Network
Network Technology	 Standard IEEE 802.3 Ethernet and proprietary (non-standard) versions Standard IETF Internet Protocol (IPv4) and proprietary (non-standard) alternatives Sporadic use of standard Layer 2 and Layer 3 network and security services 	 Standard IEEE 802.3 Ethernet Standard IETF Internet Protocol (IPv4 and IPv6) Pervasive use of standard Layer 2 and Layer 3 network and security services
Network Availability	 Switch-Level and Device-Level topologies Ring topology is predominant for both, Redundant Star for switch topologies is emerging Standard IEEE, IEC and vendor specific Layer 2 resiliency protocols 	 Switch-Level topologies Redundant Star topology is predominant Standard IEEE, IETF, and vendor specific Layer 2 and Layer 3 resiliency protocols
Service Level Agreement (SLA)	 Mean time to recovery (MTTR) - Minutes, Hours 	 Mean time to recovery (MTTR) - Hours, Days
IP Addressing	Mostly Static	Mostly Dynamic
	Deskwall Automation, Inc. All Dighta Descrived	

Challenges Associated with Technology Convergence

Criteria	Industrial OT Network	Enterprise IT Network
Traffic Type	 Primarily local – traffic between local assets Information, control, safety, motion, time synchronization, energy management Smaller Ethernet frames for control traffic Industrial application layer protocols: CIP, Profinet, IEC 61850, Modbus TCP, etc. 	 Primarily non-local – traffic to remote assets Voice, Video, Data Larger IP packets and Ethernet frames Standard application layer protocols: HTTP, SNMP, DNS, RTP, SSH, etc.
Performance	 Low Latency, Low Jitter (1 ms, 100s ns) Data Prioritization – QoS – Layer 2 and 3 	 Low Latency, Low Jitter (100s ms, 10s ms) Data Prioritization – QoS – Layer 3
Security	 Open by default, must secure by design, architecture and configuration Industrial security standards – e.g. IEC, NIST Inconsistent deployment of security policies No line-of-sight to the Enterprise or to the Internet 	 Pervasive Enterprise security best practices Strong security policies Line-of-sight across the Enterprise and to the Internet

Challenges Associated with Technology Convergence

Criteria	Industrial OT Network	Enterprise IT Network
Focus	24/7 operations, high OEE	Protecting intellectual property and company assets
Precedence of Priorities	Availability Integrity Confidentiality	Confidentiality Integrity Availability
Types of Data Traffic	Converged network of data, control, information, safety and motion	Converged network of data, voice and video
Access Control	Strict physical access Simple network device access	Strict network authentication and access policies
Implications of a Device Failure	Production is down (\$\$'s/hour or worse)	Work-around or wait
Threat Protection	Isolate threat but keep operating	Shut down access to detected threat
Upgrades	Scheduled during downtime	Automatically pushed during uptime

PUBLIC Copyright © 2018 Rockwell Automation, Inc. All Rights Reserved.

Automation

Key Requirements Reliable and Secure Network Architectures for The Connected Enterprise

Structured and Hardened Architectures

Reliable and Secure Network Architectures for The Connected Enterprise

- Scalable
- Reliable
- Safe
- Secure
- Future-ready

Key Tenets:

- Smart IIoT Devices
- Zoning (Segmentation)
- Managed Infrastructure
- Resiliency
- Time-critical Data
- Wireless Mobility
- Holistic & Diverse Defense-in-Depth Security
- Convergence-ready

Structured and Hardened Architectures

Reliable and Secure Network Architectures for The Connected Enterprise

Key Tenets:

- Smart IIoT Devices
- Zoning (Segmentation)
- Managed Infrastructure
- Resiliency
- Time-critical Data
- Wireless Mobility
- Holistic & Diverse Defense-in-Depth Security
- Convergence-ready

Structured and Hardened Architectures

Reliable and Secure Network Architectures for The Connected Enterprise

- Smart IIoT Devices
 - Hardened, ODVA Conformance Tested
- Zoning (Segmentation)
 - Logical Model based on Standards
 - Switch Hierarchy (L2/L3), VLANs, NAT
- Managed Infrastructure
 - Loop prevention, Security, Diagnostics
- Resiliency
 - Robust Physical Layer
 - Redundant Path Topology with Resiliency Protocols
 - Redundant Switches and Firewalls

- Time-critical Data
 - Data Prioritization via Quality of Service (QoS)
 - Time Synchronization via IEEE 1588 Precision Time Protocol (PTP)
- Wireless Mobility
 - Unified and Autonomous Architectures
 - Equipment and Personnel
- Holistic Defense-in-Depth Security
 - Multiple Layers, at different IACS Levels, with diverse technology
- Convergence-ready
 - Network Address Translation (NAT)

Key Tenet Smart IIoT Endpoints EtherNet/IP Network Technology and Devices

Single Industrial Network Technology

EtherNet/IP^{*}

Smart IIoT Endpoints – EtherNet/IP: Network Technology and Devices

5-Layer TCP/IP Model

20

Single Industrial Network Technology

Smart IIoT Endpoints – EtherNet/IP: Network Technology and Devices

PUBLIC Copyright © 2018 Rockwell Automation, Inc. All Rights Reserved.

EtherNet/IP^{*}

Industrial Application Convergence

Smart IIoT Endpoints – EtherNet/IP: Network Technology and Devices

Automat

EtherNet/IP Device Selection

Smart IIoT Endpoints – EtherNet/IP: Network Technology and Devices

ODVA

- Conformance tested, with declaration of conformity
- PlugFest interoperability testing in a full multi-vendor system configuration

Selection of Controllers

- # EtherNet/IP ports, types, topology
- Environment: on-machine / in-panel
- Communication speed
- Maximum # of nodes
- Minimum requested packet interval (RPI)
- Maximum I/O data size per RPI

- Selection of Sensor / Actuators
 - Application Requirements
 - Environment: on-machine / in-panel
 - # EtherNet/IP ports, types, topology
 - Communication speed
 - Minimum RPI (how fast)
 - Maximum I/O Data Size per RPI
- Selection Tools
 - Integrated Architecture Builder (IAB)
 - EtherNet/IP Capacity Tool
 - System Configuration Drawings (PCDs)

EtherNet/IP Advantage

Smart IIoT Endpoints – EtherNet/IP: Network Technology and Devices

- Single industrial network technology for:
 - <u>Multi-discipline Network Convergence</u> Discrete, Continuous Process, Batch, Motor, Safety, Motion, Power, Time Synchronization, Supervisory Information, Asset Configuration/Diagnostics

Established

- <u>Risk reduction</u> broad availability of products, applications and vendor support
- ODVA: Cisco Systems[®], Endress+Hauser, Rockwell Automation[®] are principal members
- Supported Conformance testing, defined QoS priority values for EtherNet/IP devices
- Standard IEEE 802.3 Ethernet and IETF TCP/IP Protocol Suite
 - Enables convergence of OT and IT common toolsets (assets for design, deployment and troubleshooting) and skills/training (human assets)
 - Topology and media independence <u>flexibility and choice</u>
 - Device-level and switch-level topologies; copper fiber wireless

Portability and routability – seamless plant-wide / site-wide information sharing

No data mapping – simplifies design, speeds deployment and reduces risk

Key Tenet Zoning (Segmentation)

Structured and Hardened Network Infrastructure

Zoning (Segmentation)

Smaller Connected LANs to help:

- Minimize network sprawl
- Modular building block approach for scalable, reliable, safe, secure and future-ready network infrastructure
- Segment Industrial IoT Technologies
- Smaller Layer 2 broadcast domains
 - Restrict Layer 2 broadcast traffic
 - Smaller fault domains (e.g. Layer 2 loops)
 - Smaller domains of trust (security)

- Multiple techniques to create smaller network building blocks (Layer 2 domains)
 - Logical zoning geographical and functional organization of IACS devices
 - Multiple network interface cards (NICs) e.g. CIP bridge
 - Campus network model multi-tier switch hierarchy Layer 2 and Layer 3
 - Virtual Local Area Networks (VLANs) with Access Control Lists (ACLs), Firewalls
 - Network Address Translation (NAT)
 - Software-Defined Segmentation via Security Group Tagging (SGT)

Key Tenet Logical Zoning (Segmentation)

CPwE Logical Model - Built on Technology and Industry Standards

Logical Zoning (Segmentation)

OT Standards

Operational Levels

- ISA 95, Purdue Levels 0-5
 - Level 0 Sensor/Actuators
 - Level 1 Controller
 - Level 2 Local Supervisor
 - Level 3 Site Operations
 - Levels 4-5 Enterprise
- Functional / Security Zones
 - IEC-62443, NIST 800-82, DHS/INL/ICS-CERT
 - Enterprise, Industrial, IDMZ
 - Industrial Subzones Cell/Area, Site Operations

PUBLIC Copyright © 2018 Rockwell Automation, Inc. All Rights Reserved.

IT Standards

- Network Technology
 - OSI Reference Model 7 Layers
 - IEEE 802.1, 802.3, 802.11
 - IETF TCP, UDP, IP
- Network Switch Hierarchy
 - Campus Network Model
 - Layer 2 Access
 - Layer 3 Distribution/Aggregation
 - Layer 3 Core

CPwE Logical Model - Operational Levels - Functional / Security Zones

Logical Zoning (Segmentation)

Rockwell

Automation

Plant-wide Functional / Security Zoning

Logical Zoning (Segmentation)

Plant-wide Zoning

- Functional / Security Areas
- Smaller Connected LANs
 - Smaller Broadcast Domains
 - Smaller Fault Domains
 - Smaller Domains of Trust
- IEC 62443-3-2 Security Zones and Secure Conduits Model
- DHS/INL/ICS-CERT Best Practices
- Industrial IoT Technology
- Building Block Approach for Scalability

Plant-wide Functional / Security Zoning

Logical Zoning (Segmentation)

Key Tenet Segmentation - Network Services

Islands of Automation with Isolated Local Area Networks (LANs)

Segmentation – Network Services

Multiple Network Interface Cards (NICs) - CIP™ Bridge

Segmentation – Network Services

- Benefits
 - Clear network ownership demarcation line
- Challenges
 - Limited visibility to control network devices for asset management
 - Limited future-ready capability
 - Smaller PACs may not support

- Benefits
 - Plant-wide information sharing for data collection and asset management
 - Future-ready
- Challenges
 - Blurred network ownership demarcation line

Multiple Network Interface Cards (NICs) - CIP™ Bridge

Segmentation – Network Services

- Benefits
 - Clear network ownership demarcation line
- Challenges
 - Limited visibility to control network devices for asset management
 - Limited future-ready capability
 - Smaller PACs may not support
- PUBLIC Copyright © 2018 Rockwell Automation, Inc. All Rights Reserved.

- Benefits
 - Plant-wide information sharing for data collection and asset management
 - Future-ready
- Challenges
 - Blurred network ownership demarcation line

Layer 2 Collision Domains

Segmentation – Network Services

Layer 2 Broadcast Domains - Switch Hierarchy

Segmentation – Network Services

Rockwell

Automatio

37

Switch Hierarchy, Virtual LANs (VLANs)

Segmentation – Network Services

Automation

Segmentation – Network Services

- Layer 2 network service, VLANs segment a network logically without being restricted by physical connections
 - VLAN established within or across switches
- Data is only forwarded to ports within the same VLAN
 - Devices within each VLAN can only communicate with other devices on the same VLAN
- Segments traffic to restrict unwanted broadcast and multicast traffic
- Software configurable using managed switches
- Benefits
 - Ease network changes minimize network cabling
 - Simplifies network security management domains of trust
 - Increase efficiency

Segmentation – Network Services

Layer 2 VLAN Trunking

- Independent of physical switch location
- Logically group assets by type, role, logical area, physical area or a hybrid of these
- Devices communicate as if they are on the same physical segment no re-cabling required
- Software configurable using managed switches
- A Layer 3 device (Router or Layer 3 switch) is required to forward traffic between different VLANs
 - Inter-VLAN routing

Segmentation – Network Services

Trunking Methods

IEEE 802.1Q, generally referred to as "dot1q"

Rockwell 41

Segmentation – Network Services

VLAN Trunking Protocol (VTP)

- Provides centralized VLAN management, runs only on trunks
- Three modes:
 - Server: updates clients and servers
 - Client: receive updates cannot make changes
 - Transparent: allow updates to pass through
- Use VTP transparent mode to decrease potential for operational error
 - Define VLANs at each switch, no centralized management

Switch Hierarchy, Virtual LANs (VLANs)

Segmentation – Network Services

Multi-Layer Switch

- Layer 2 VLAN Trunking
- Layer 3 Inter-VLAN routing

43

Au

to the second

Design and Implementation Considerations

Segmentation – Network Services

VLANs

- Segment different traffic types into separate VLANs (Control & Information, VoIP, HTTP)
- Create smaller IP Subnet (/24 prefix) per VLAN
- Within the Cell/Area Zone
 - Use Layer 2 VLAN trunking between switches with similar traffic types
 - When trunking, use 802.1Q, VTP in transparent mode
- Use Layer 3 Inter-VLAN routing/switching
 - Between VLANs within the same Cell/Area zone
 - Between zones
- Assign different traffic types to a unique VLAN, other than VLAN 1

IP Subnets - Network Address Translation (NAT)

Segmentation – Network Services

- <u>Network Address Translation is a service</u> which can translate a packet from one IP address to another IP address
- Can be a Layer 2 or Layer 3 device
- Has two forms:
 - One to One (1:1) Allows for the assignment of a unique outside IP address to a specific inside IP address
 - One to Many (1:n) a.k.a. TCP/UDP Port Address Translation (PAT). Allows Multiple devices to share one "Outside" address

Network Address Translation (NAT) - Layer 3 Address Segmentation

Segmentation – Network Services

IPv4 Header

Version	IHL	Type of Service	Total Length	
Identification		Flags	Fragment Offset	
Time to Live		Protocol	Header Checksum	
Source Address				
Destination Address				
Options			Padding	

Why use Network Address Translation (NAT)?

Segmentation – Network Services

Allows a single device to act as an agent between the Plant (Outside) network and the Equipment/Skid/Machine (Inside) network.

- Helps simplify integration of IP address mapping from a equipment/skid/machine level IP addresses to the plant network.
- Allows OEMs to develop standard equipment/skids/machines and eliminate the need for unique IP addressing and code modifications.
- Allows End Users to more easily integrate equipment/skids/machines into their larger plant network without extensive coordination with OEMs.
- Provides better maintainability at the equipment/skids/machines as they remain standard.
- Allows for reuse of IP addresses allowing for more connected devices in a limited address pool.

Layer 3 vs Layer 2 NAT Devices

Segmentation – Network Services

Layer 2 NAT Device Key Points

- Hardware based implementation, performance is at
 wire speed throughout switch loading
- NAT device does not act as a router and utilizes 2 translations tables – inside to outside & outside to inside
 - Supports multiple VLANs through NAT boundary enhancing segmentation flexibility (communication between VLANS requires a separate layer 3 device)
- Broadcast traffic in a VLAN can propagate through the NAT boundary
- Untranslated traffic, including multicast, can be permitted through the NAT boundary

Layer 3 NAT Device Key Points

- Typically a software implementation, performance of translation directly tied to the loading of the NAT CPU
- NAT device acts as the default gateway (router) for the devices on the inside network
 - NAT device will intercept traffic, perform translation, and route traffic
- Broadcast traffic is stopped at the NAT boundary
- Untranslated traffic is not permitted through the NAT device

Network Address Translation (NAT)

Segmentation – Network Services

tomatio

Network Address Translation (NAT) Limitations

Segmentation – Network Services

These applications are not supported, which is typical for all NAT devices:

- Traffic encryption and integrity checking protocols generally incompatible with NAT (for example, IPsec transport mode)
- Applications that use dynamic session initiations, such as NetMeeting
- File Transfer Protocol (FTP)
- Microsoft[®] Distributed Component Object Model (DCOM), which is used in Open Platform Communication (OPC)
- Multicast I/O and Multicast Produced Consumed traffic
- IEEE 1588 PTP unless the NAT-enabled switch is in boundary mode

No Segmentation (not recommended)

Segmentation – Network Services

Multiple Network Interface Cards (NICs) - CIP Bridge Segmentation

Segmentation – Network Services

52

Automatio

Layer 3 NAT Appliance Segmentation

Segmentation – Network Services

53

Layer 3 NAT - Integrated Services Router Segmentation

Segmentation – Network Services

54

VLAN Segmentation without NAT

Segmentation – Network Services

55

VLAN Segmentation with Layer 2 NAT

Segmentation – Network Services

56

Design and Implementation Considerations

Segmentation – Network Services

Design smaller modular building blocks to help create functional / security zones

- Minimize network sprawl
- Build scalable, robust and future-ready network infrastructure
- Smaller Connected LANs
 - Smaller fault domains (e.g. Layer 2 loops)
 - Smaller broadcast domains
 - Smaller domains of trust (security)
- Segment Industrial IoT Technologies
- Multiple techniques to create smaller network building blocks (Layer 2 domains)
 - Logical zoning, Multiple NICs
 - Campus network model multi-tier switch hierarchy Layer 2 and Layer 3
 - Virtual Local Area Networks (VLANs), Network Address Translation (NAT)
 - Firewalls

Otázky?

Děkuji Vám za pozornost

Roman Foukal, Commercial Engineer A&S / TÜV FS Technician #322/15 +420 724 980 366 / rfoukal@ra.rockwell.com

Děkuji za pozornost!

